# 目录
1.Module 1 - Introduction to RNA sequencing
2.Module 2 - RNA-seq Alignment and Visualization
3.Module 3 - Expression and Differential Expression
4.Module 4 - Isoform Discovery and Alternative Expression
- Reference Guided Transcript Assembly
- de novo Transcript Assembly
- Transcript Assembly Merge
- Differential Splicing
- Splicing Visualization
5.Module 5 - De novo transcript reconstruction
6.Module 6 - Functional Annotation of Transcripts
# 3.3 DE Visualization
在正确的目录(之前的 UHR_vs_HBR.csv),然后启动 R:
# Load libraries needed for this analysis | |
library(ballgown) | |
library(genefilter) | |
library(dplyr) | |
library(devtools) | |
# Define a path for the output PDF to be written | |
outfile="~/workspace/rnaseq/de/ballgown/ref_only/Tutorial_Part2_ballgown_output.pdf" | |
# Load phenotype data | |
pheno_data = read.csv("UHR_vs_HBR.csv") | |
# Display the phenotype data | |
pheno_data | |
# Load the ballgown object from file | |
load('bg.rda') | |
# The load command, loads an R object from a file into memory in our R session. | |
# You can use ls() to view the names of variables that have been loaded | |
ls() | |
# Print a summary of the ballgown object | |
bg | |
# Open a PDF file where we will save some plots. We will save all figures and then view the PDF at the end | |
pdf(file=outfile) | |
# Extract FPKM values from the 'bg' object | |
fpkm = texpr(bg,meas="FPKM") | |
# View the last several rows of the FPKM table | |
tail(fpkm) | |
# Transform the FPKM values by adding 1 and convert to a log2 scale | |
fpkm = log2(fpkm+1) | |
# View the last several rows of the transformed FPKM table | |
tail(fpkm) | |
# Create boxplots to display summary statistics for the FPKM values for each sample | |
boxplot(fpkm,col=as.numeric(pheno_data$type)+1,las=2,ylab='log2(FPKM+1)') | |
# Display the transcript ID for a single row of data | |
ballgown::transcriptNames(bg)[2763] | |
# Display the gene name for a single row of data | |
ballgown::geneNames(bg)[2763] | |
# Create a BoxPlot comparing the expression of a single gene for all replicates of both conditions | |
plot(fpkm[2763,] ~ pheno_data$type, border=c(2,3), main=paste(ballgown::geneNames(bg)[2763],' : ', ballgown::transcriptNames(bg)[2763]),pch=19, xlab="Type", ylab='log2(FPKM+1)') | |
# Add the FPKM values for each sample onto the plot | |
points(fpkm[2763,] ~ jitter(as.numeric(pheno_data$type)), col=as.numeric(pheno_data$type)+1, pch=16) | |
# Create a plot of transcript structures observed in each replicate and color transcripts by expression level | |
plotTranscripts(ballgown::geneIDs(bg)[2763], bg, main=c('Gene in sample HBR_Rep1'), sample=c('HBR_Rep1')) | |
plotTranscripts(ballgown::geneIDs(bg)[2763], bg, main=c('Gene in sample HBR_Rep2'), sample=c('HBR_Rep2')) | |
plotTranscripts(ballgown::geneIDs(bg)[2763], bg, main=c('Gene in sample HBR_Rep3'), sample=c('HBR_Rep3')) | |
plotTranscripts(ballgown::geneIDs(bg)[2763], bg, main=c('Gene in sample UHR_Rep1'), sample=c('UHR_Rep1')) | |
plotTranscripts(ballgown::geneIDs(bg)[2763], bg, main=c('Gene in sample UHR_Rep2'), sample=c('UHR_Rep2')) | |
plotTranscripts(ballgown::geneIDs(bg)[2763], bg, main=c('Gene in sample UHR_Rep3'), sample=c('UHR_Rep3')) | |
#plotMeans('TST',bg,groupvar="type",legend=FALSE) | |
# Close the PDF device where we have been saving our plots | |
dev.off() | |
# Exit the R session | |
quit(save="no") |
查看一下输出的 pdf 文件
# 额外分析
运行 R 脚本
#Tutorial_Part3_Supplementary_R.R | |
#Malachi Griffith, mgriffit[AT]wustl.edu | |
#Obi Griffith, obigriffith[AT]wustl.edu | |
#Jason Walker, jason.walker[AT]wustl.edu | |
#McDonnell Genome Institute, Washington University School of Medicine | |
#R tutorial for Informatics for RNA-sequence Analysis workshops | |
#Starting from the output of the RNA-seq Tutorial Part 1. | |
#Load libraries | |
library(ggplot2) | |
library(gplots) | |
library(GenomicRanges) | |
library(ballgown) | |
#If X11 not available, open a pdf device for output of all plots | |
pdf(file="Tutorial_Part3_Supplementary_R_output.pdf") | |
#### Import the gene expression data from the HISAT2/StringTie/Ballgown tutorial | |
#Set working directory where results files exist | |
working_dir = "~/workspace/rnaseq/de/ballgown/ref_only" | |
setwd(working_dir) | |
# List the current contents of this directory | |
dir() | |
#Import expression and differential expression results from the HISAT2/StringTie/Ballgown pipeline | |
load('bg.rda') | |
# View a summary of the ballgown object | |
bg | |
# Load gene names for lookup later in the tutorial | |
bg_table = texpr(bg, 'all') | |
bg_gene_names = unique(bg_table[, 9:10]) | |
# Pull the gene_expression data frame from the ballgown object | |
gene_expression = as.data.frame(gexpr(bg)) | |
#### Working with 'dataframes' | |
#View the first five rows of data (all columns) in one of the dataframes created | |
head(gene_expression) | |
#View the column names | |
colnames(gene_expression) | |
#View the row names | |
row.names(gene_expression) | |
#Determine the dimensions of the dataframe. 'dim()' will return the number of rows and columns | |
dim(gene_expression) | |
#Get the first 3 rows of data and a selection of columns | |
gene_expression[1:3,c(1:3,6)] | |
#Do the same thing, but using the column names instead of numbers | |
gene_expression[1:3, c("FPKM.UHR_Rep1","FPKM.UHR_Rep2","FPKM.UHR_Rep3","FPKM.HBR_Rep3")] | |
#Assign colors to each. You can specify color by RGB, Hex code, or name | |
#To get a list of color names: | |
colours() | |
data_colors=c("tomato1","tomato2","tomato3","royalblue1","royalblue2","royalblue3") | |
#View expression values for the transcripts of a particular gene symbol of chromosome 22. e.g. 'TST' | |
#First determine the rows in the data.frame that match 'TST', aka. ENSG00000128311, then display only those rows of the data.frame | |
i = row.names(gene_expression) == "ENSG00000128311" | |
gene_expression[i,] | |
#What if we want to view values for a list of genes of interest all at once? | |
#genes_of_interest = c("TST", "MMP11", "LGALS2", "ISX") | |
genes_of_interest = c("ENSG00000128311","ENSG00000099953","ENSG00000100079","ENSG00000175329") | |
i = which(row.names(gene_expression) %in% genes_of_interest) | |
gene_expression[i,] | |
# Load the transcript to gene index from the ballgown object | |
transcript_gene_table = indexes(bg)$t2g | |
head(transcript_gene_table) | |
#Each row of data represents a transcript. Many of these transcripts represent the same gene. Determine the numbers of transcripts and unique genes | |
length(row.names(transcript_gene_table)) #Transcript count | |
length(unique(transcript_gene_table[,"g_id"])) #Unique Gene count | |
#### Plot #1 - the number of transcripts per gene. | |
#Many genes will have only 1 transcript, some genes will have several transcripts | |
#Use the 'table()' command to count the number of times each gene symbol occurs (i.e. the # of transcripts that have each gene symbol) | |
#Then use the 'hist' command to create a histogram of these counts | |
#How many genes have 1 transcript? More than one transcript? What is the maximum number of transcripts for a single gene? | |
counts=table(transcript_gene_table[,"g_id"]) | |
c_one = length(which(counts == 1)) | |
c_more_than_one = length(which(counts > 1)) | |
c_max = max(counts) | |
hist(counts, breaks=50, col="bisque4", xlab="Transcripts per gene", main="Distribution of transcript count per gene") | |
legend_text = c(paste("Genes with one transcript =", c_one), paste("Genes with more than one transcript =", c_more_than_one), paste("Max transcripts for single gene = ", c_max)) | |
legend("topright", legend_text, lty=NULL) | |
#### Plot #2 - the distribution of transcript sizes as a histogram | |
#In this analysis we supplied StringTie with transcript models so the lengths will be those of known transcripts | |
#However, if we had used a de novo transcript discovery mode, this step would give us some idea of how well transcripts were being assembled | |
#If we had a low coverage library, or other problems, we might get short 'transcripts' that are actually only pieces of real transcripts | |
full_table <- texpr(bg , 'all') | |
hist(full_table$length, breaks=50, xlab="Transcript length (bp)", main="Distribution of transcript lengths", col="steelblue") | |
#### Summarize FPKM values for all 6 replicates | |
#What are the minimum and maximum FPKM values for a particular library? | |
min(gene_expression[,"FPKM.UHR_Rep1"]) | |
max(gene_expression[,"FPKM.UHR_Rep1"]) | |
#Set the minimum non-zero FPKM values for use later. | |
#Do this by grabbing a copy of all data values, coverting 0's to NA, and calculating the minimum or all non NA values | |
#zz = fpkm_matrix[,data_columns] | |
#zz[zz==0] = NA | |
#min_nonzero = min(zz, na.rm=TRUE) | |
#min_nonzero | |
#Alternatively just set min value to 1 | |
min_nonzero=1 | |
# Set the columns for finding FPKM and create shorter names for figures | |
data_columns=c(1:6) | |
short_names=c("UHR_1","UHR_2","UHR_3","HBR_1","HBR_2","HBR_3") | |
#### Plot #3 - View the range of values and general distribution of FPKM values for all 4 libraries | |
#Create boxplots for this purpose | |
#Display on a log2 scale and add the minimum non-zero value to avoid log2(0) | |
boxplot(log2(gene_expression[,data_columns]+min_nonzero), col=data_colors, names=short_names, las=2, ylab="log2(FPKM)", main="Distribution of FPKMs for all 6 libraries") | |
#Note that the bold horizontal line on each boxplot is the median | |
#### Plot #4 - plot a pair of replicates to assess reproducibility of technical replicates | |
#Tranform the data by converting to log2 scale after adding an arbitrary small value to avoid log2(0) | |
x = gene_expression[,"FPKM.UHR_Rep1"] | |
y = gene_expression[,"FPKM.UHR_Rep2"] | |
plot(x=log2(x+min_nonzero), y=log2(y+min_nonzero), pch=16, col="blue", cex=0.25, xlab="FPKM (UHR, Replicate 1)", ylab="FPKM (UHR, Replicate 2)", main="Comparison of expression values for a pair of replicates") | |
#Add a straight line of slope 1, and intercept 0 | |
abline(a=0,b=1) | |
#Calculate the correlation coefficient and display in a legend | |
rs=cor(x,y)^2 | |
legend("topleft", paste("R squared = ", round(rs, digits=3), sep=""), lwd=1, col="black") | |
#### Plot #5 - Scatter plots with a large number of data points can be misleading ... regenerate this figure as a density scatter plot | |
colors = colorRampPalette(c("white", "blue", "#007FFF", "cyan","#7FFF7F", "yellow", "#FF7F00", "red", "#7F0000")) | |
smoothScatter(x=log2(x+min_nonzero), y=log2(y+min_nonzero), xlab="FPKM (UHR, Replicate 1)", ylab="FPKM (UHR, Replicate 2)", main="Comparison of expression values for a pair of replicates", colramp=colors, nbin=200) | |
#### Plot all sets of replicates on a single plot | |
#Create an function that generates an R plot. This function will take as input the two libraries to be compared and a plot name and color | |
plotCor = function(lib1, lib2, name, color){ | |
x=gene_expression[,lib1] | |
y=gene_expression[,lib2] | |
zero_count = length(which(x==0)) + length(which(y==0)) | |
plot(x=log2(x+min_nonzero), y=log2(y+min_nonzero), pch=16, col=color, cex=0.25, xlab=lib1, ylab=lib2, main=name) | |
abline(a=0,b=1) | |
rs=cor(x,y, method="pearson")^2 | |
legend_text = c(paste("R squared = ", round(rs, digits=3), sep=""), paste("Zero count = ", zero_count, sep="")) | |
legend("topleft", legend_text, lwd=c(1,NA), col="black", bg="white", cex=0.8) | |
} | |
#Open a plotting page with room for two plots on one page | |
par(mfrow=c(1,2)) | |
#Plot #6 - Now make a call to our custom function created above, once for each library comparison | |
plotCor("FPKM.UHR_Rep1", "FPKM.HBR_Rep1", "UHR_1 vs HBR_1", "tomato2") | |
plotCor("FPKM.UHR_Rep2", "FPKM.HBR_Rep2", "UHR_2 vs HBR_2", "royalblue2") | |
##### One problem with these plots is that there are so many data points on top of each other, that information is being lost | |
#Regenerate these plots using a density scatter plot | |
plotCor2 = function(lib1, lib2, name, color){ | |
x=gene_expression[,lib1] | |
y=gene_expression[,lib2] | |
zero_count = length(which(x==0)) + length(which(y==0)) | |
colors = colorRampPalette(c("white", "blue", "#007FFF", "cyan","#7FFF7F", "yellow", "#FF7F00", "red", "#7F0000")) | |
smoothScatter(x=log2(x+min_nonzero), y=log2(y+min_nonzero), xlab=lib1, ylab=lib2, main=name, colramp=colors, nbin=275) | |
abline(a=0,b=1) | |
rs=cor(x,y, method="pearson")^2 | |
legend_text = c(paste("R squared = ", round(rs, digits=3), sep=""), paste("Zero count = ", zero_count, sep="")) | |
legend("topleft", legend_text, lwd=c(1,NA), col="black", bg="white", cex=0.8) | |
} | |
#### Plot #7 - Now make a call to our custom function created above, once for each library comparison | |
par(mfrow=c(1,2)) | |
plotCor2("FPKM.UHR_Rep1", "FPKM.HBR_Rep1", "UHR_1 vs HBR_1", "tomato2") | |
plotCor2("FPKM.UHR_Rep2", "FPKM.HBR_Rep2", "UHR_2 vs HBR_2", "royalblue2") | |
#### Compare the correlation 'distance' between all replicates | |
#Do we see the expected pattern for all eight libraries (i.e. replicates most similar, then tumor vs. normal)? | |
#Calculate the FPKM sum for all 6 libraries | |
gene_expression[,"sum"]=apply(gene_expression[,data_columns], 1, sum) | |
#Identify the genes with a grand sum FPKM of at least 5 - we will filter out the genes with very low expression across the board | |
i = which(gene_expression[,"sum"] > 5) | |
#Calculate the correlation between all pairs of data | |
r=cor(gene_expression[i,data_columns], use="pairwise.complete.obs", method="pearson") | |
#Print out these correlation values | |
r | |
#### Plot #8 - Convert correlation to 'distance', and use 'multi-dimensional scaling' to display the relative differences between libraries | |
#This step calculates 2-dimensional coordinates to plot points for each library | |
#Libraries with similar expression patterns (highly correlated to each other) should group together | |
#What pattern do we expect to see, given the types of libraries we have (technical replicates, biologal replicates, tumor/normal)? | |
d=1-r | |
mds=cmdscale(d, k=2, eig=TRUE) | |
par(mfrow=c(1,1)) | |
plot(mds$points, type="n", xlab="", ylab="", main="MDS distance plot (all non-zero genes)", xlim=c(-0.12,0.12), ylim=c(-0.12,0.12)) | |
points(mds$points[,1], mds$points[,2], col="grey", cex=2, pch=16) | |
text(mds$points[,1], mds$points[,2], short_names, col=data_colors) | |
# Calculate the differential expression results including significance | |
results_genes = stattest(bg, feature="gene", covariate="type", getFC=TRUE, meas="FPKM") | |
results_genes = merge(results_genes,bg_gene_names,by.x=c("id"),by.y=c("gene_id")) | |
#### Plot #9 - View the distribution of differential expression values as a histogram | |
#Display only those that are significant according to Ballgown | |
sig=which(results_genes$pval<0.05) | |
results_genes[,"de"] = log2(results_genes[,"fc"]) | |
hist(results_genes[sig,"de"], breaks=50, col="seagreen", xlab="log2(Fold change) UHR vs HBR", main="Distribution of differential expression values") | |
abline(v=-2, col="black", lwd=2, lty=2) | |
abline(v=2, col="black", lwd=2, lty=2) | |
legend("topleft", "Fold-change > 4", lwd=2, lty=2) | |
#### Plot #10 - Display the grand expression values from UHR and HBR and mark those that are significantly differentially expressed | |
gene_expression[,"UHR"]=apply(gene_expression[,c(1:3)], 1, mean) | |
gene_expression[,"HBR"]=apply(gene_expression[,c(4:6)], 1, mean) | |
x=log2(gene_expression[,"UHR"]+min_nonzero) | |
y=log2(gene_expression[,"HBR"]+min_nonzero) | |
plot(x=x, y=y, pch=16, cex=0.25, xlab="UHR FPKM (log2)", ylab="HBR FPKM (log2)", main="UHR vs HBR FPKMs") | |
abline(a=0, b=1) | |
xsig=x[sig] | |
ysig=y[sig] | |
points(x=xsig, y=ysig, col="magenta", pch=16, cex=0.5) | |
legend("topleft", "Significant", col="magenta", pch=16) | |
#Get the gene symbols for the top N (according to corrected p-value) and display them on the plot | |
topn = order(abs(results_genes[sig,"fc"]), decreasing=TRUE)[1:25] | |
topn = order(results_genes[sig,"qval"])[1:25] | |
text(x[topn], y[topn], results_genes[topn,"gene_name"], col="black", cex=0.75, srt=45) | |
#### Write a simple table of differentially expressed transcripts to an output file | |
#Each should be significant with a log2 fold-change >= 2 | |
sigpi = which(results_genes[,"pval"]<0.05) | |
sigp = results_genes[sigpi,] | |
sigde = which(abs(sigp[,"de"]) >= 2) | |
sig_tn_de = sigp[sigde,] | |
#Order the output by or p-value and then break ties using fold-change | |
o = order(sig_tn_de[,"qval"], -abs(sig_tn_de[,"de"]), decreasing=FALSE) | |
output = sig_tn_de[o,c("gene_name","id","fc","pval","qval","de")] | |
write.table(output, file="SigDE_supplementary_R.txt", sep="\t", row.names=FALSE, quote=FALSE) | |
#View selected columns of the first 25 lines of output | |
output[1:25,c(1,4,5)] | |
#You can open the file "SigDE.txt" in Excel, Calc, etc. | |
#It should have been written to the current working directory that you set at the beginning of the R tutorial | |
dir() | |
#### Plot #11 - Create a heatmap to vizualize expression differences between the eight samples | |
#Define custom dist and hclust functions for use with heatmaps | |
mydist=function(c) {dist(c,method="euclidian")} | |
myclust=function(c) {hclust(c,method="average")} | |
main_title="sig DE Transcripts" | |
par(cex.main=0.8) | |
sig_genes=results_genes[sig,"id"] | |
sig_gene_names=results_genes[sig,"gene_name"] | |
data=log2(as.matrix(gene_expression[sig_genes,data_columns])+1) | |
heatmap.2(data, hclustfun=myclust, distfun=mydist, na.rm = TRUE, scale="none", dendrogram="both", margins=c(6,7), Rowv=TRUE, Colv=TRUE, symbreaks=FALSE, key=TRUE, symkey=FALSE, density.info="none", trace="none", main=main_title, cexRow=0.3, cexCol=1, labRow=sig_gene_names,col=rev(heat.colors(75))) | |
dev.off() | |
#The output file can be viewed in your browser at the following url: | |
#Note, you must replace __YOUR_IP_ADDRESS__ with your own amazon instance IP | |
#http://__YOUR_IP_ADDRESS__/workspace/rnaseq/de/ballgown/ref_only/Tutorial_Part3_Supplementary_R_output.pdf | |
#To exit R type: | |
quit(save="no") |