# 前言

本教程来自与我保存在 github 上的 RNAseq 教程

这是一个 RNA-seq 分析的教学教程和工作演示流程,包括介绍云计算 (不介绍了,直接从第二章开始)、下一代序列文件格式、参考基因组、基因注释、表达分析、差异表达分析、选择性剪接分析、数据可视化和解释。

# 目录

1.Module 1 - Introduction to RNA sequencing

  1. Installation
  2. Reference Genomes
  3. Annotations
  4. Indexing
  5. RNA-seq Data
  6. Pre-Alignment QC

2.Module 2 - RNA-seq Alignment and Visualization

  1. Adapter Trim
  2. Alignment
  3. IGV
  4. Alignment Visualization
  5. Alignment QC

3.Module 3 - Expression and Differential Expression

  1. Expression
  2. Differential Expression
  3. DE Visualization
  4. Kallisto for Reference-Free Abundance Estimation

4.Module 4 - Isoform Discovery and Alternative Expression

  1. Reference Guided Transcript Assembly
  2. de novo Transcript Assembly
  3. Transcript Assembly Merge
  4. Differential Splicing
  5. Splicing Visualization

5.Module 5 - De novo transcript reconstruction

  1. De novo RNA-Seq Assembly and Analysis Using Trinity

6.Module 6 - Functional Annotation of Transcripts

  1. Functional Annotation of Assembled Transcripts Using Trinotate

# 软件安装(module 1: Installation)

分析所需的软件有:samtools, bamo -readcount, HISAT2, stringtie, gffcompare, htseq-count, flexbar, R, ballgown,fastqc 和 picard-tools。

设置软件安装位置:

mkdir student_tools
cd student_tools

# SAMtools

wget https://github.com/samtools/samtools/releases/download/1.9/samtools-1.9.tar.bz2
bunzip2 samtools-1.9.tar.bz2
tar -xvf samtools-1.9.tar
cd samtools-1.9
make
./samtools

# bam-readcount

export SAMTOOLS_ROOT=$RNA_HOME/student_tools/samtools-1.9
git clone https://github.com/genome/bam-readcount.git
cd bam-readcount
cmake -Wno-dev $RNA_HOME/student_tools/bam-readcount
make
./bin/bam-readcount

# HISAT2

wget ftp://ftp.ccb.jhu.edu/pub/infphilo/hisat2/downloads/hisat2-2.1.0-Linux_x86_64.zip
unzip hisat2-2.1.0-Linux_x86_64.zip
cd hisat2-2.1.0
./hisat2

# StringTie

wget http://ccb.jhu.edu/software/stringtie/dl/stringtie-1.3.4d.Linux_x86_64.tar.gz
tar -xzvf stringtie-1.3.4d.Linux_x86_64.tar.gz
cd stringtie-1.3.4d.Linux_x86_64
./stringtie

# gffcompare

wget http://ccb.jhu.edu/software/stringtie/dl/gffcompare-0.10.6.Linux_x86_64.tar.gz
tar -xzvf gffcompare-0.10.6.Linux_x86_64.tar.gz
cd gffcompare-0.10.6.Linux_x86_64
./gffcompare

# htseq-count

wget https://github.com/simon-anders/htseq/archive/release_0.11.0.tar.gz
tar -zxvf release_0.11.0.tar.gz
cd htseq-release_0.11.0/
python setup.py install --user
chmod +x scripts/htseq-count
./scripts/htseq-count

# TopHat

wget https://ccb.jhu.edu/software/tophat/downloads/tophat-2.1.1.Linux_x86_64.tar.gz
tar -zxvf tophat-2.1.1.Linux_x86_64.tar.gz
cd tophat-2.1.1.Linux_x86_64/
./gtf_to_fasta

# kallisto

wget https://github.com/pachterlab/kallisto/releases/download/v0.44.0/kallisto_linux-v0.44.0.tar.gz
tar -zxvf kallisto_linux-v0.44.0.tar.gz
cd kallisto_linux-v0.44.0/
./kallisto

# FastQC

wget https://www.bioinformatics.babraham.ac.uk/projects/fastqc/fastqc_v0.11.8.zip --no-check-certificate
unzip fastqc_v0.11.8.zip
cd FastQC/
chmod 755 fastqc
./fastqc --help

# MultiQC

pip3 install multiqc
multiqc --help

# Picard

wget https://github.com/broadinstitute/picard/releases/download/2.18.15/picard.jar -O picard.jar
java -jar $RNA_HOME/student_tools/picard.jar

# Flexbar

wget https://github.com/seqan/flexbar/releases/download/v3.4.0/flexbar-3.4.0-linux.tar.gz
tar -xzvf flexbar-3.4.0-linux.tar.gz
cd flexbar-3.4.0-linux/
export LD_LIBRARY_PATH=$RNA_HOME/student_tools/flexbar-3.4.0-linux:$LD_LIBRARY_PATH
./flexbar

# Regtools

git clone https://github.com/griffithlab/regtools
cd regtools/
mkdir build
cd build/
cmake ..
make
./regtools

# RSeQC

pip install RSeQC
read_GC.py

# R Libraries

#install.packages(c("devtools","dplyr","gplots","ggplot2"),repos="http://cran.us.r-project.org")
#quit(save="no")

# Bioconductor

#source("http://bioconductor.org/biocLite.R")
#biocLite(c("genefilter","ballgown","edgeR","GenomicRanges","rhdf5","biomaRt"))
#quit(save="no")

# Sleuth

#install.packages("devtools")
#devtools::install_github("pachterlab/sleuth")
#quit(save="no")

# 练习

在 student_tools 下安装 bedtools,并编译和测试

更新于 阅读次数

请我喝[茶]~( ̄▽ ̄)~*

amane 微信支付

微信支付

amane 支付宝

支付宝